Original Apollo 11 Guidance Computer (AGC) source code for the command and lunar modules. Tracking the original at upload https://github.com/chrislgarry/Apollo-11
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 

1739 lines
34 KiB

# Copyright: Public domain.
# Filename: P34-35_P74-75.agc
# Purpose: Part of the source code for Comanche, build 055. It
# is part of the source code for the Command Module's
# (CM) Apollo Guidance Computer (AGC), Apollo 11.
# Assembler: yaYUL
# Reference: pp. 460-504
# Contact: Onno Hommes <ohommes@cmu.edu>
# Website: http://www.ibiblio.org/apollo.
# Mod history: 2009-05-10 OH Batch 2 Assignment Comanche Transcription
# 2009-05-23 RSB In DISPLAYE, corrected a CADR GOFLASHR
# to CADR GOFLASH.
#
# The contents of the "Comanche055" files, in general, are transcribed
# from scanned documents.
#
# Assemble revision 055 of AGC program Comanche by NASA
# 2021113-051. April 1, 1969.
#
# This AGC program shall also be referred to as Colossus 2A
#
# Prepared by
# Massachusetts Institute of Technology
# 75 Cambridge Parkway
# Cambridge, Massachusetts
#
# under NASA contract NAS 9-4065.
#
# Refer directly to the online document mentioned above for further
# information. Please report any errors to info@sandroid.org.
# Page 460
# TRANSFER PHASE INITIATION (TPI) PROGRAMS (P34 AND P74)
# MOD NO -1 LOG SECTION -- P32-P35, P72-P75
# MOD BY WHITE, P. DATE: 1 JUNE 67
#
# PURPOSE
# (1) TO CALCULATE THE REQUIRED DELTA V AND OTHER INITIAL CONDITIONS
# REQUIRED BY THE ACTIVE VEHICLE FOR EXECUTION OF THE TRANSFER
# PHASE INITIATION (TPI) MANEUVER, GIVEN --
# (A) TIME OF IGNITION TIG (TPI) OR THE ELEVATION ANGLE (E) OF
# THE ACTIVE/PASSIVE VEHICLE LOS AT TIG (TPI).
# (B) CENTRAL ANGLE OF TRANSFER (CENTANG) FROM TIG (TPI) TO
# INTERCEPT TIME (TIG (TPF)).
# (2) TO CALCULATE TIG (TPI) GIVEN E OR E GIVEN TIG (TPI).
# (3) TO CALCULATE THESE PARAMETERS BASED UPON MANEUVER DATA
# APPROVED AND KEYED INTO THE DSKY BY THE ASTRONAUT.
# (4) TO DISPLAY TO THE ASTRONAUT AND THE GROUND CERTAIN DEPENDENT
# VARIABLES ASSOCIATED WITH THE MANEUVER FOR APPROVAL BY THE
# ASTRONAUT/GROUND.
# (5) TO STORE THE TPI TARGET PARAMETERS FOR USE BY THE DESIRED
# THRUSTING PROGRAM.
#
# ASSUMPTIONS
# (1) LM ONLY -- THIS PROGRAM IS BASED UPON PREVIOUS COMPLETION OF
# THE CONSTANT DELTA ALTITUDE (CDH) PROGRAM (P33/P73).
# THEREFORE --
# (A) AT A SELECTED TPI TIME (NOW IN STORAGE) THE LINE OF SIGHT
# BETWEEN THE ACTIVE AND PASSIVE VEHICLES WAS SELECTED TO BE
# A PRESCRIBED ANGLE (E) (NOW IN STORAGE) FROM THE
# HORIZONTAL PLANE DEFINED BY THE ACTIVE VEHICLE POSITION.
# (B) THE TIME BETWEEN CDH IGNITION AND TPI IGNITION WAS
# COMPUTED TO BE GREATER THAN 10 MINUTES.
# (C) THE VARIATION OF THE ALTITUDE DIFFERENCE BETWEEN THE
# ORBITS WAS MINIMIZED.
# (D) THE PERICENTER ALTITUDES OF ORBITS FOLLOWING CSI AND
# CDH WERE COMPUTED TO BE GREATER THAN 35,000 FT FOR LUNAR
# Page 461
# ORBIT OR 85 NM FOR EARTH ORBIT.
# (E) THE CSI AND CDH MANEUVERS WERE ASSUMED TO BE PARALLEL TO
# THE PLANE OF THE PASSIVE VEHICLE ORBIT. HOWEVER, CREW
# MODIFICATION OF DELTA V (LV) COMPONENTS MAY HAVE RESULTED
# IN AN OUT-OF-PLANE MANEUVER.
# (2) STATE VECTOR UPDATED BY P27 ARE DISALLOWED DURING AUTOMATIC
# STATE VECTOR UPDATING INITIATED BY P20 (SEE ASSUMPTION (4)).
# (3) THIS PROGRAM MUST BE DONE OVER A TRACKING STATION FOR REAL
# TIME GROUND PARTICIPATION IN DATA INPUT AND OUTPUT. COMPUTED
# VARIABLES MAY BE STORED FOR LATER VERIFICATION BY THE GROUND.
# THESE STORAGE CAPABILITIES ARE LIMITED ONLY TO THE PARAMETERS
# FOR ONE THRUSTING MANEUVER AT A TIME EXCEPT FOR CONCENTRIC
# FLIGHT PLAN MANEUVER SEQUENCES.
# (4) THE RENDEZVOUS RADAR MAY OR MAY NOT BE USED TO UPDATE THE LM
# OR CSM STATE VECTORS FOR THIS PROGRAM. IF RADAR USE IS
# DESIRED THE RADAR WAS TURNED ON AND LOCKED ON THE CSM BY
# PREVIOUS SELECTION OF P20. RADAR SIGHTING MARKS WILL BE MADE
# AUTOMATICALLY APPROXIMATELY ONCE A MINUTE WHEN ENABLED BY THE
# TRACK AND UPDATE FLAGS (SEE P20). THE RENDEZVOUS TRACKING
# MARK COUNTER IS ZEROED BY THE SELECTION OF P20 AND AFTER EACH
# THRUSTING MANEUVER.
# (5) THE ISS NEED NOT BE ON TO COMPLETE THIS PROGRAM.
# (6) THE OPERATION OF THE PROGRAM UTILIZES THE FOLLOWING FLAGS --
#
# ACTIVE VEHICLE FLAG -- DESIGNATES THE VEHICLE WHICH IS
# DOING RENDEZVOUS THRUSTING MANEUVERS TO THE PROGRAM WHICH
# CALCULATES THE MANEUVER PARAMETERS. SET AT THE START OF
# EACH RENDEZVOUS PRE-THRUSTING PROGRAM.
#
# FINAL FLAG -- SELECTS FINAL PROGRAM DISPLAYS AFTER CREW HAS
# SELECTED THE FINAL MANEUVER COMPUTATION CYCLE.
#
# EXTERNAL DELTA V FLAG -- DESIGNATES THE TYPE OF STEERING
# REQUIRED FOR EXECUTION OF THIS MANEUVER BY THE THRUSTING
# PROGRAM SELECTED AFTER COMPLETION OF THIS PROGRAM.
#
# (7) ONCE THE PARAMETERS REQUIRED FOR COMPUTATION OF THE MANEUVER
# HAVE BEEN COMPLETELY SPECIFIED, THE VALUE OF THE ACTIVE
# VEHICLE CENTRAL ANGLE OF TRANSFER IS COMPUTED AND STORED.
# THIS NUMBER WILL BE AVAILABLE FOR DISPLAY TO THE ASTRONAUT
# THROUGH THE USE OF V06N52.
#
# THE ASTRONAUT WILL CALL THIS DISPLAY TO VERIFY THAT THE
# CENTRAL ANGLE OF TRANSFER OF THE ACTIVE VEHICLE IS NOT WITHIN
# Page 462
# 170 TO 190 DEGREES. IF THE ANGLE IS WITHIN THIS ZONE THE
# ASTRONAUT SHOULD REASSES THE INPUT TARGETING PARAMETERS BASED
# UPON DELTA V AND EXPECTED MANEUVER TIME.
# (8) THIS PROGRAM IS SELECTED BY THE ASTRONAUT BY DSKY ENTRY --
#
# P34 IF THIS VEHICLE IS ACTIVE VEHICLE.
#
# P74 IF THIS VEHICLE IS PASSIVE VEHICLE.
#
# INPUT
# (1) TTPI TIME OF THE TPI MANEUVER.
# (2) ELEV DESIRED LOS ANGLE AT TPI
# (3) CENTANG ORBITAL CENTRAL ANGLE OF THE PASSIVE VEHICLE DURING
# TRANSFER FROM TPI TO TIME OF INTERCEPT
#
# OUTPUT
# (1) TRKMKCNT NUMBER OF MARKS
# (2) TTOGO TIME TO GO
# (3) +MGA MIDDLE GIMBAL ANGLE
# (4) TTPI COMPUTED TIME OF TPI MANEUVER
# OR
# ELEV COMPUTED LOS ANGLE AT TPI
# (5) POSTTPI PERIGEE ALTITUDE AFTER THE TPI MANEUVER
# (6) DELVTPI MAGNITUDE OF DELTA V AT TPI
# (7) DELVTPF MAGNITUDE OF DELTA V AT INTERCEPT
# (8) DVLOS DELTA VELOCITY AT TPI -- LINE OF SIGHT
# (9) DELVLVC DELTA VELOCITY AT TPI -- LOCAL VERTICAL COORDINATES
#
# DOWNLINK
# (1) TTPI TIME OF TPI MANEUVER
# (2) TIG TIME OF TPI MANEUVER
# (3) ELEV DESIRED LOS ANGLE AT TPI
# (4) CENTANG ORBITAL CENTRAL ANGLE OF THE PASSIVE VEHICLE DURING
# TRANSFER FROM TPI TO TIME OF INTERCEPT
# (5) DELVEET3 DELTA VELOCITY AT TPI -- REFERENCE COORDINATES
# (6) TPASS4 TIME OF INTERCEPT
#
# COMMUNICATION TO THRUSTING PROGRAMS
# (1) TIG TIME OF THE TPI MANEUVER
# (2) RTARG OFFSET TARGET POSITION
# (3) TPASS4 TIME OF INTERCEPT
# (4) XDELVFLG RESET TO INDICATE LAMBERT (AIMPOINT) VG COMPUTATION
#
# SUBROUTINES USED
# AVFLAGA
# Page 463
# AVFLAGP
# VNP00H
# DISPLAYE
# SELECTMU
# PRECSET
# S33/34.1
# ALARM
# BANKCALL
# GOFLASH
# GOTOP00H
# TIMETHET
# S34/35.2
# PERIAPO1
# SHIFTR1
# S34/35.5
# VN1645
SETLOC CSI/CDH
BANK
EBANK= SUBEXIT
COUNT 35/P3474
P34 TC AVFLAGA
TC P34/P74A
P74 TC AVFLAGP
P34/P74A TC P20FLGON # SET UPDATFLG, TRACKFLG
CAF V06N37 # TTPI
TC VNP00H # Onno: The scans look like O not zero
TC INTPRET
SSP EXIT
NN
0
TC DISPLAYE # ELEV AND CENTANG
TC INTPRET
CLEAR DLOAD
ETPIFLAG
TTPI
STODL TIG
ELEV
BZE SET
P34/P74B
ETPIFLAG
P34/P74B CALL
SELECTMU
DELELO EQUALS 26D
P34/P74C DLOAD SET
ZEROVECS
ITSWICH
BON CLEAR
ETPIFLAG
# Page 464
SWCHSET
ITSWICH
SWCHSET STORE NOMTPI
INTLOOP DLOAD DAD
TTPI
NOMTPI
STCALL TDEC1
PRECSET
CALL
S33/34.1
BZE EXIT
SWCHCLR
TC ALARM
OCT 611
CAF V05N09
TC BANKCALL
CADR GOFLASH
TC GOTOP00H
TC P34/P74A # PROCEED
TC -7 # V32
SWCHCLR BONCLR BON
ITSWICH
INTLOOP
ETPIFLAG
P34/P74D # DISPLAY TTPI
EXIT
TC DISPLAYE # DISPLAY ELEV AND CENTANG
TC P34/P74E
P34/P74D EXIT
CAF V06N37 # TTPI
TC VNP00H
P34/P74E TC INTPRET
SETPD DLOAD
0D
RTX1
STODL X1
CENTANG
PUSH COS
STODL CSTH
SIN
STOVL SNTH
RPASS3
VSR*
0,2
STOVL RVEC
VPASS3
VSR* SET
0,2
RVSW
# Page 465
STCALL VVEC
TIMETHET
DLOAD
TTPI
STORE INTIME # FOR INITVEL
DAD
T # RENDEZVOUS TIME
STCALL TPASS4 # FOR INITVEL
S34/35.2
VLOAD ABVAL
DELVEET3
STOVL DELVTPI
VPASS4
VSU ABVAL
VTPRIME
STOVL DELVTPF
RACT3
PDVL CALL
VIPRIME
PERIAPO1
CALL
SHIFTR1
STODL POSTTPI
TTPI
STORE TIG
EXIT
CAF V06N58
TC VNP00H
TC INTPRET
CALL
S34/35.5
CALL
VN1645
GOTO
P34/P74C
# Page 466
# RENDEZVOUS MID-COURSE MANEUVER PROGRAMS (P35 AND P75)
# MOD NO -1 LOG SECTION -- P32-P35, P72-P75
# MOD BY WHITE, P. DATE: 1 JUNE 67
#
# PURPOSE
# (1) TO CALCULATE THE REQUIRED DELTA V AND OTHER INITIAL CONDITIONS
# REQUIRED BY THE ACTIVE VEHICLE FOR EXECUTION OF THE NEXT
# MID-COURSE CORRECTION OF THE TRANSFER PHASE OF AN ACTIVE
# VEHICLE RENDEZVOUS.
# (2) TO DISPLAY TO THE ASTRONAUT AND THE GROUND CERTAIN DEPENDENT
# VARIABLES ASSOCIATED WITH THE MANEUVER FOR APPROVAL BY THE
# ASTRONAUT/GROUND.
# (3) TO STORE THE TPM TARGET PARAMETERS FOR USE BY THE DESIRED
# THRUSTING PROGRAM.
#
# ASSUMPTIONS
# (1) THE ISS NEED NOT BE ON TO COMPLETE THIS PROGRAM.
# (2) STATE VECTOR UPDATES BY P27 ARE DISALLOWED DURING AUTOMATIC
# STATE VECTOR UPDATING INITIATED BY P20 (SEE ASSUMPTION (3)).
# (3) THE RENDEZVOUS RADAR IS ON AND IS LOCKED ON THE CSM. THIS WAS
# DONE DURING PREVIOUS SELECTION OF P20. RADAR SIGHTING MARKS
# WILL BE MADE AUTOMATICALLY APPROXIMATELY ONCE A MINUTE WHEN
# ENABLED BY THE TRACK AND UPDATE FLAGS (SEE P20). THE
# RENDEZVOUS TRACKING MARK COUNTER IS ZEROED BY THE SELECTION OF
# P20 AND AFTER EACH THRUSTING MANEUVER.
# (4) THE OPERATION OF THE PROGRAM UTILIZES THE FOLLOWING FLAGS --
#
# ACTIVE VEHICLE FLAG -- DESIGNATES THE VEHICLE WHICH IS
# DOING RENDEZVOUS THRUSTING MANEUVERS TO THE PROGRAM WHICH
# CALCULATES THE MANEUVER PARAMETERS. SET AT THE START OF
# EACH RENDEZVOUS PRE-THRUSTING PROGRAM.
#
# FINAL FLAG -- SELECTS FINAL PROGRAM DISPLAYS AFTER CREW HAS
# SELECTED THE FINAL MANEUVER COMPUTATION CYCLE.
#
# EXTERNAL DELTA V FLAG -- DESIGNATES THE TYPE OF STEERING
# REQUIRED FOR EXECUTION OF THIS MANEUVER BY THE THRUSTING
# PROGRAM SELECTED AFTER COMPLETION OF THIS PROGRAM.
#
# (5) THE TIME OF INTERCEPT (T(INT)) WAS DEFINED BY PREVIOUS
# COMPLETION OF THE TRANSFER PHASE INITIATION (TPI) PROGRAM
# (P34/P74) AND IS PRESENTLY AVAILABLE IN STORAGE.
# Page 467
# (6) ONCE THE PARAMETERS REQUIRED FOR COMPUTATION OF THE MANEUVER
# HAVE BEEN COMPLETELY SPECIFIED, THE VALUE OF THE ACTIVE
# VEHICLE CENTRAL ANGLE OF TRANSFER IS COMPUTED AND STORED.
# THIS NUMBER WILL BE AVAILABLE FOR DISPLAY TO THE ASTRONAUT
# THROUGH THE USE OF V06N52
#
# THE ASTRONAUT WILL CALL THIS DISPLAY TO VERIFY THAT THE
# CENTRAL ANGLE OF TRANSFER OF THE ACTIVE VEHICLE IS NOT WITHIN
# 170 TO 190 DEGREES. IF THE ANGLE IS WITHIN THIS ZONE THE
# ASTRONAUT SHOULD REASSESS THE INPUT TARGETING PARAMETERS BASED
# UPON DELTA V AND EXPECTED MANEUVER TIME.
# (7) THIS PROGRAM IS SELECTED BY THE ASTRONAUT BY DSKY ENTRY --
#
# P35 IF THIS VEHICLE IS ACTIVE VEHICLE.
#
# P75 IF THIS VEHICLE IS PASSIVE VEHICLE.
#
# INPUT
# (1) TPASS4 TIME OF INTERCEPT -- SAVED FROM P34/P74
#
# OUTPUT
# (1) TRKMKCNT NUMBER OF MARKS
# (2) TTOGO TIME TO GO
# (3) +MGA MIDDLE GIMBAL ANGLE
# (4) DVLOS DELTA VELOCITY AT MID -- LINE OF SIGHT
# (5) DELVLVC DELTA VELOCITY AT MID -- LOCAL VERTICAL COORDINATES
#
# DOWNLINK
# (1) TIG TIME OF THE TPM MANEUVER
# (2) DELVEET3 DELTA VELOCITY AT TPM -- REFERENCE COORDINATES
# (3) TPASS4 TIME OF INTERCEPT
#
# COMMUNICATION TO THRUSTING PROGRAMS
# (1) TIG TIME OF THE TPM MANEUVER
# (2) RTARG OFFSET TARGET POSITION
# (3) TPASS4 TIME OF INTERCEPT
# (4) XDELVFLG RESET TO INDICATE LAMBERT (AIMPOINT) VG COMPUTATION.
#
# SUBROUTINES USED
# AVFLAGA
# AVFLAGP
# LOADTIME
# SELECTMU
# PRECSET
# S34/35.1
# S34/35.2
# Page 468
# S34/35.5
# VN1645
COUNT 35/P3575
EBANK= KT
P35 TC AVFLAGA
EXTEND
DCA ATIGINC
TC P35/P75A
P75 TC AVFLAGP
EXTEND
DCA PTIGINC
P35/P75A DXCH KT
TC P20FLGON # SET UPDATFLG, TRACKFLG
TC INTPRET
CALL
SELECTMU
P35/P75B RTB
LOADTIME
STORE TSTRT
DAD
KT
STORE TIG
STORE INTIME # FOR INITVEL
STCALL TDEC1
PRECSET # ADVANCE BOTH VEHICLES
CALL
S34/35.1 # GET NORM AND LOS FOR TRANSFORM
CALL
S34/35.2 # GET DELTA V(LV)
CALL
S34/35.5
CALL
VN1645
GOTO
P35/P75B
# Page 469
# ***** S33/34.1 *****
S33/34.1 STQ SSP
NORMEX
TITER
OCT 40000
DLOAD SETPD
MAX250
0D
STOVL SECMAX
RACT3
STOVL RAPREC
VACT3
STOVL VAPREC
RPASS3
STOVL RPPREC
VPASS3
STORE VPPREC
ELCALC CALL
S34/35.1 # NORMAL AND LOS
VXV PDVL
RACT3 # (RA*VA)*RA 0D
PDVL UNIT # ULOS AT 6D
RACT3
PDVL VPROJ # XCHNJ AND UP
VSL2 BVSU
ULOS
UNIT PDVL # UP AT 0D
DOT PDVL # UP.UN*RA AT 0D
0D # UP IN MPAC
DOT SIGN
ULOS
SL1 ACOS
PDVL DOT # EA AT 0D
ULOS
RACT3
BPL DLOAD
TESTY
DPPOSMAX
DSU PUSH
TESTY BOFF DLOAD
ITSWICH
ELEX
DELEL
STODL DELELO
DSU
ELEV
STORE DELEL
ABS DSU
ELEPS
# Page 470
BMN
TIMEX # COMMERCIALS EVERYWHERE
FIGTIME SLOAD SR1
TITER
BHIZ LXA,1
NORMEX # TOO MANY ITERATIONS
MPAC
SXA,1 VLOAD
TITER
RPASS3
UNIT PDDL
36D
PDVL UNIT
RACT3
PDDL
PDDL PUSH
36D
BDSU
12D
STODL 30D # RP-RA MAGNITUDES
DPHALF
DSU PUSH
ELEV
SIGN BMN
30D
NORMEX
DLOAD COS
DMP DDV
14D
12D
DCOMP # SINCE COS(180-A)=-COS A
STORE 28D
ABS BDSU
DPHALF
BMN VLOAD
NORMEX
UNRM
VXV UNIT
6D # UN*RA
DOT DMP
VACT3
12D
PDVL VXV
0D
VPASS3
VXV UNIT
0D # (RP*VP)*RP
DOT DMP
VPASS3
14D
# Page 471
BDSU
NORM PDVL # NORMALIZED WA-WP 12D
X1
6D
VXV DOT
0D
UNRM # RA*RP.UN 14D
PDVL DOT
0D
6D
SL1 ACOS
SIGN
DSU DAD # ALPHA PI
DPHALF
ELEV
PDDL ACOS
28D
BDSU SIGN
DPHALF
30D # CONTAINS RP-RA
DAD
DMP DDV
TWOPI
DMP
SL* DMP
0 -3,1
PUSH ABS
DSU BMN
SECMAX
OKMAX
DLOAD SIGN # REPLACE TIME WITH MAX TIME SIGNED
SECMAX
PUSH
OKMAX SLOAD BPL # TEST FIRST ITERATION
TITER
REPETE
SSP DLOAD
TITER
OCT 37777
GOTO
STORDELT
REPETE DLOAD DMP
DELEL
DELELO
BPL DLOAD
NEXTES
SECMAX
DMP
THIRD
STODL SECMAX
# Page 472
ABS SR1 # CROSSED OVER SOLUTION
DCOMP GOTO # DT=(-SIGN(DTO)//DT//)/2
RESIGN
NEXTES DLOAD ABS
DELEL
PDDL ABS
DELELO
DSU
BMN DLOAD
REVERS # WRONG DIRECTION
ABS
RESIGN SIGN GOTO
DELTEEO
STORDELT
REVERS DLOAD DCOMP
DELTEEO
PUSH SR1
STORE DELTEEO
DAD
GOTO
ADTIME
STORDELT STORE DELTEEO
ADTIME DAD
NOMTPI # SUM OF DELTA T:S
STORE NOMTPI
VLOAD PDVL
VAPREC
RAPREC
CALL
GOINT
CALL
ACTIVE # STORE NEW RACT3 VACT3
VLOAD PDVL
VPPREC
RPPREC
CALL
GOINT
CALL
PASSIVE # STORE NEW RPASS3 VPASS3
GOTO
ELCALC
ELEX DLOAD DAD
TTPI
NOMTPI
STODL TTPI
BON
ETPIFLAG
TIMEX
STORE ELEV
TIMEX DLOAD GOTO
# Page 473
ZEROVECS
NORMEX
# Page 474
# ***** S34/35.1 *****
# COMPUTE UNIT NORMAL AND LINE OF SIGHT VECTORS GIVEN THE ACTIVE AND
# PASSIVE POS AND VEL AT TIME T3
SETLOC S3435LOC
BANK
S34/35.1 VLOAD VSU
RPASS3
RACT3
UNIT PUSH
STOVL ULOS
RACT3
VXV UNIT
VACT3
STORE UNRM
RVQ
# Page 475
# ***** S34/35.2 *****
# ADVANCE PASSIVE VEH TO RENDEZVOUS TIME AND GET REQ VEL FROM LAMBERT
SETLOC CSI/CDH
BANK
S34/35.2 STQ VLOAD
SUBEXIT
VPASS3
PDVL PDDL
RPASS3
INTIME
PDDL PDDL
TPASS4
TWOPI # CONIC
PDDL BHIZ
NN
S3435.23
DLOAD PDDL
ZEROVECS # PRECISION
S3435.23 CALL
INTINT # GET TARGET VECTOR
S3435.25 STOVL RTARG
VATT
STOVL VPASS4
RTARG
# COMPUTE PHI = PI + (ACOS(UNIT RA.UNIT RP) - PI) SIGN(RA*RP.U)
UNIT PDVL # UNIT RP
RACT3
UNIT PUSH # UNIT RA
VXV DOT
0D
UNRM # RA*RP.U
PDVL
DOT SL1 # UNIT RA.UNIT RP
0D
ACOS SIGN
BPL DAD
NOPIE
DPPOSMAX # REASONABLE TWO PI
NOPIE STODL ACTCENT
TPASS4
DSU
INTIME
STORE DELLT4
SLOAD SETPD
NN # NUMBER OF OFFSETS
0D
PDDL PDVL
EPSFOUR
# Page 476
RACT3
STOVL RINIT
VACT3
STCALL VINIT
INITVEL
CALL
LOMAT
VLOAD MXV
DELVEET3
0D
VSL1
STCALL DELVLVC
SUBEXIT
# Page 477
# ***** S34/35.3 *****
S34/35.3 STQ CALL
NORMEX
LOMAT # GET MATRIX IN PUSH LIST
VLOAD VXM
DELVLVC # NEW DEL V TPI
0D
VSL1
STORE DELVEET3 # SAVE FOR TRANSFORM
VAD PDVL
VACT3 # NEW V REQ
RACT3
PDDL PDDL
TIG
TPASS4
PDDL PUSH
DPPOSMAX
CALL # INTEG. FOR NEW TARGET VEC
INTINT
VLOAD
RATT
STORE RTARG
NOVRWRT VLOAD PUSH
ULOS
VXV VCOMP
UNRM
UNIT PUSH
VXV VSL1
ULOS
PDVL
PDVL MXV
DELVEET3
0D
VSL1
STCALL DVLOS
NORMEX
# Page 478
# ***** S34/35.4 *****
S34/35.4 STQ SETPD # NO ASTRONAUT OVERWRITE
NORMEX
0D
GOTO
NOVRWRT
# Page 479
# ***** LOMAT *****
LOMAT VLOAD VCOMP
UNRM
STOVL 6D # Y
RACT3
UNIT VCOMP
STORE 12D
VXV VSL1
UNRM # Z*-Y
STORE 0D
SETPD RVQ
18D
GOINT PDDL PDDL # DO
ZEROVECS # NOT
NOMTPI #
PUSH PUSH # ORDER OR INSERT BEFORE INTINT
INTINT STQ CALL
RTRN
INTSTALL
CLEAR DLOAD
INTYPFLG
BZE SET
+2
INTYPFLG
DLOAD STADR
STODL TDEC1
SET LXA,2
MOONFLAG
RTX2
BON CLEAR
CMOONFLG
ALLSET
MOONFLAG
ALLSET STOVL TET
VSR*
0,2
STOVL RCV
VSR*
0,2
STCALL VCV
INTEGRVS
VLOAD GOTO
RATT
RTRN
# Page 480
# ***** S34/35.5 *****
#
# SUBROUTINES USED
# BANKCALL
# GOFLASH
# GOTOP00H
# S34/35.3
# S34.35.4
# VNP00H
S34/35.5 STQ BON
SUBEXIT
FINALFLG
FLAGON
SET GOTO
UPDATFLG
FLAGOFF
FLAGON VLOAD
DELVLVC
STORE DVLOS # SAVE DELTA V BEFORE DISPLAY
EXIT
CAF V06N81
TC VNP00H
TC INTPRET
VLOAD VSU # TEST FOR OVERWRITE OF COMPUTED
DELVLVC # DELTA V
DVLOS
ABVAL BZE
NOCHG # NO OVERWRITE
CALL
S34/35.3
NOCHG CLEAR VLOAD
XDELVFLG
DELVEET3
STORE DELVSIN
FLAGOFF CALL
S34/35.4
EXIT
CAF V06N59
TC VNP00H
TC INTPRET
GOTO
SUBEXIT
# Page 481
# ***** VN1645 *****
#
# SUBROUTINES USED
# P3XORP7X
# GET+MGA
# BANKCALL
# DELAYJOB
# COMPTGO
# GOFLASHR
# GOTOP00H
# FLAGUP
VN1645 STQ DLOAD
SUBEXIT
DP-.01
STORE +MGA # MGA = -.01
BOFF DLOAD
FINALFLG
GET45
DP-.01
DAD
DP-.01
STORE +MGA # MGA = -.02
BOFF EXIT
REFSMFLG
GET45
TC P3XORP7X
TC +2 # P3X
TC GET45 +1 # P7X
TC INTPRET
VLOAD PUSH
DELVSIN
CALL # COMPUTE MGA
GET+MGA
GET45 EXIT
TC COMPTGO # INITIATE TASK TO UPDATE TTOGO
CA SUBEXIT
TS QSAVED
CAF 1SEC
TC BANKCALL
CADR DELAYJOB
CAF V16N45 # TRKMKCNT, TTOGO, +MGA
TC BANKCALL
CADR GOFLASH
TC KILCLOCK # TERMINATE
TC N45PROC # PROCEED
TC CLUPDATE # RECYCLE -- RETURN FOR INITIAL COMPUTATION
KILCLOCK CA Z
TS DISPDEX
# Page 482
TC GOTOP00H
N45PROC CS FLAGWRD2
MASK BIT6
EXTEND
BZF KILCLOCK # FINALFLG IS SET -- FLASH V37 -- AWAIT NEW PGM
TC PHASCHNG
OCT 04024
TC UPFLAG # SET
ADRES FINALFLG # FINALFLG
CLUPDATE CA Z
TS DISPDEX
TC PHASCHNG
OCT 04024
TC INTPRET
CLEAR GOTO
UPDATFLG
QSAVED
# Page 483
# ***** DISPLAYE *****
#
# SUBROUTINES USED
# BANKCALL
# GOFLASHR
# GOTOP00H
# BLANKET
# ENDOFJOB
DISPLAYE EXTEND
QXCH NORMEX
CAF V06N55
TCR BANKCALL
CADR GOFLASH
TCF GOTOP00H
TC NORMEX
TCF -5
# Page 484
# ***** P3XORP7X *****
P3XORP7X CAF HIGH9
MASK MODREG
EXTEND
BZF +2
INCR Q
RETURN
# ***** VNP00H *****
#
# SUBROUTINES USED
# BANKCALL
# GOFLASH
# GOTOP00H
SETLOC P30SUBS
BANK
VNP00H EXTEND
QXCH RTRN
TS VERBNOUN
CAF VNBANK # ***** THIS ROUTINE MUST REMAIN IN
XCH FBANK # FIXED-FIXED *****
TS TBASE5 # * WATCH OUT *
CA VERBNOUN
TCR BANKCALL
CADR GOFLASH
TCF GOTOP00H
TCF +2
VNBANK TC -5
CA TBASE5
TS FBANK
TC RTRN
# Page 485
# ***** CONSTANTS *****
V06N37 VN 0637
V06N55 VN 0655
V06N58 VN 0658
V06N59 VN 0659
V06N81 VN 0681
V16N45 VN 1645
SETLOC CSI/CDH
BANK
TWOPI 2DEC 6.283185307 B-4
MAX250 2DEC 25 E3 B-28 # RSB 2004 added the B-28. OH 2009 leave?
THIRD 2DEC .333333333
ELEPS 2DEC .27777777 E-3
DECTWO OCT 2
DP-.01 OCT 77777 # CONSTANTS
OCT 61337 # ADJACENT -.01 FOR MGA DSP
EPSFOUR 2DEC .0416666666
# Page 486
# ***** INITVEL *****
# MOD NO -1 LOG SECTION -- P34-P35, P74-P75
# MOD BY WHITE, P. DATE: 21 NOV 67
#
# FUNCTIONAL DESCRIPTION
# THIS SUBROUTINE COMPUTES THE REQUIRED INITIAL VELOCITY VECTOR FOR
# A TRAJECTORY OF SPECIFIC TRANSFER TIME BETWEEN SPECIFIED INITIAL
# AND TARGET POSITIONS. THE TRAJECTORY MAY BE EITHER CONIC OR
# PRECISION DEPENDING ON AN INPUT PARAMETER (NAMELY, NUMBER OF
# OFFSETS). IN ADDITION, IN THE PRECISION TRAJECTORY CASE, THE
# SUBROUTINE ALSO COMPUTES AN OFFSET TARGET VECTOR, TO BE USED
# DURING PURE-CONIC CROSS-PRODUCT STEERING. THE OFFSET TARGET
# VECTOR IS THE TERMINAL POSITION VECTOR OF A CONIC TRAJECTORY WHICH
# HAS THE SAME INITIAL STATE AS A PRECISION TRAJECTORY WHOSE
# TERMINAL POSITION VECTOR IS THE SPECIFIED TARGET VECTOR.
#
# IN ORDER TO AVOID THE INHERENT SINGULARITIES IN THE 180 DEGREE
# TRANSFER CASE WHEN THE (TRUE OR OFFSET) TARGET VECTOR MAY BE
# SLIGHTLY OUT OF THE ORBITAL PLANE, THIS SUBROUTINE ROTATES THIS
# VECTOR INTO A PLANE DEFINED BY THE INPUT INITIAL POSITION VECTOR
# AND ANOTHER INPUT VECTOR (USUALLY THE INITIAL VELOCITY VECTOR),
# WHENEVER THE INPUT TARGET VECTOR LIES INSIDE A CONE WHOSE VERTEX
# IS THE ORIGIN OF COORDINATES, WHOSE AXIS IS THE 180 DEGREE
# TRANSFER DIRECTION, AND WHOSE CONE ANGLE IS SPECIFIED BY THE USER.
#
# THE LAMBERT SUBROUTINE IS UTILIZED FOR THE CONIC COMPUTATIONS AND
# THE COASTING INTEGRATION SUBROUTINE IS UTILIZED FOR THE PRECISION
# TRAJECTORY COMPUTATIONS.
#
# CALLING SEQUENCE
# L CALL
# L+1 INITVEL
# L+2 (RETURN -- ALWAYS)
#
# INPUT
# (1) RINIT INITIAL POSITION RADIUS VECTOR
# (2) VINIT INITIAL POSITION VELOCITY VECTOR
# (3) RTARG TARGET POSITION RADIUS VECTOR
# (4) DELLT4 DESIRED TIME OF FLIGHT FROM RINIT TO RTARG
# (5) INTIME TIME OF RINIT
# (6) 0D NUMBER OF ITERATIONS OF LAMBERT/INTEGRVS
# (7) 2D ANGLE TO 180 DEGREES WHEN ROTATION STARTS
# (8) RTX1 -2 FOR EARTH, -10D FOR LUNAR
# (9) RTX2 COORDINATE SYSTEM ORIGIN -- 0 FOR EARTH, 2 FOR LUNAR
# PUSHLOC SET AT 4D
#
# Page 487
# OUTPUT
# (1) RTARG OFFSET TARGET POSITION VECTOR
# (2) VIPRIME MANEUVER VELOCITY REQUIRED
# (3) VTPRIME VELOCITY AT TARGET AFTER MANEUVER
# (4) DELVEET3 DELTA VELOCITY REQUIRED FOR MANEUVER
#
# SUBROUTINES USED
# LAMBERT
# INTSTALL
# INTEGRVS
SETLOC INTVEL
BANK
COUNT 11/INITV
INITVEL SET # COGA GUESS NOT AVAILABLE
GUESSW
HAVEGUES VLOAD STQ
RTARG
NORMEX
STORE RTARG1
SLOAD BHIZ
RTX2
INITVEL1
VLOAD VSL2
RINIT # B29
STOVL RINIT # B27
VINIT # B7
VSL2
STOVL VINIT # B5
RTARG1
VSL2
STORE RTARG1
# INITIALIZATION
INITVEL1 SSP DLOAD # SET ITCTR TO -1,LOAD MPAC WITH E4 (PL 2D)
ITCTR
0 -1
COSINE SR1 # CALCULATE COSINE (E4) (+2)
STODL COZY4 # SET COZY4 TO COSINE (E4) (PL 0D)
LXA,2 SXA,2
MPAC
VTARGTAG # SET VTARGTAG TO 0D (SP)
VLOAD
RINIT
STOVL R1VEC # R1VEC EQ RINIT
RTARG1
# Page 488
STODL R2VEC # R2VEC EQ RTARG
DELLT4
STORE TDESIRED # TDESIRED EQ DELLT4
SETPD VLOAD
0D # INITIALIZE PL TO 0D
RINIT # MPAC EQ RINIT (+29)
UNIT PUSH # UNIT(RI) (+1) (PL 6D)
VXV UNIT
VINIT # MPAC EQ UNIT(RI) X VI (+8)
STOVL UN
RTARG1
UNIT DOT # TEMP=URT.URI (+2) (PL 0D)
DAD CLEAR
COZY4
NORMSW
STORE COZY4
INITVEL2 BPL SET
INITVEL3 # UN CALCULATED IN LAMBERT
NORMSW
# ROTATE RC INTO YC PLANE -- SET UNIT NORMAL TO YC
VLOAD PUSH # (PL 6D)
R2VEC # RC TO 6D (+29)
ABVAL PDVL # RC TO MPAC, ABVAL(RC) (+29) TO OD(PL 2D)
PUSH VPROJ # (PL 8D)
UN
VSL2 BVSU
UNIT VXSC # (PL 0D)
VSL1
STORE R2VEC
TLOAD SLOAD
ZEROVEC
ITCTR
BPL VLOAD
INITVEL3
R2VEC
STORE RTARG1
INITVEL3 DLOAD PDVL # (PL 2D)
MUEARTH # POSITIVE VALUE
R2VEC
UNIT PDVL # 2D = UNIT(R2VEC) (PL 8D)
R1VEC
UNIT PUSH # 8D = UNIT(R1VEC) (PL 14D)
VXV VCOMP # -N = UNIT(R2VEC) X UNIT(R1VEC)
2D
PUSH # (PL 20D)
LXA,1 DLOAD
RTX1
18D
BMN INCR,1
# Page 489
+2
DEC -8
INCR,1 SLOAD
10D
X1
BHIZ VLOAD # (PL 14D)
+2
VCOMP PUSH # (PL 20 D)
VLOAD # (PL 14D)
VXV DOT # (PL 2D)
BPL DLOAD # (PL 0D)
INITVEL4
DCOMP PUSH # (PL 2D)
INITVEL4 LXA,2 SXA,2
0D
GEOMSGN
# SET INPUTS UP FOR LAMBERT
LXA,1 CALL
RTX1
# OPERATE THE LAMBERT CONIC ROUTINE (COASTFLT SUBROUTINE)
LAMBERT
# ARRIVED AT SOLUTION IS GOOD ENOUGH ACCORDING TO SLIGHTLY WIDER BOUNDS.
CLEAR VLOAD
GUESSW
VVEC
# STORE CALCULATED INITIAL VELOCITY REQUIRED IN VIPRIME
STODL VIPRIME # INITIAL VELOCITY REQUIRED (+7)
# IF NUMIT IS ZERO, CONTINUE AT INITVELB, OTHERWISE
# SET UP INPUTS FOR ENCKE INTEGRATION (INTEGRVS).
VTARGTAG
BHIZ CALL
INITVEL7
INTSTALL
SLOAD CLEAR
RTX2
MOONFLAG
BHIZ SET
INITVEL5
MOONFLAG
INITVEL5 VLOAD
RINIT
STORE R1VEC
# Page 490
STOVL RCV
VIPRIME
STODL VCV
INTIME
STORE TET
DAD CLEAR
DELLT4
INTYPFLG
STCALL TDEC1
INTEGRVS
VLOAD
VATT1
STORE VTARGET
# IF ITERATION COUNTER (ITCTR) EQ NO. ITERATIONS (NUMIT), CONTINUE AT
# INITVELC, OTHERWISE REITERATE LAMBERT AND ENCKE
LXA,2 INCR,2
ITCTR
1D # INCREMENT ITCTR
SXA,2 XSU,2
ITCTR
VTARGTAG
SLOAD BHIZ # IF SP(MPAC) EQ 0, CONTINUE AT INITVELC
X2
INITVEL6
# OFFSET CONIC TARGET VECTGOR
VLOAD VSU
RTARG1
RATT1
VAD
R2VEC
STODL R2VEC
COZY4
GOTO
INITVEL2 # CONTINUE ITERATING AT INITVEL2
# COMPUTE THE DELTA VELOCITY
INITVEL6 VLOAD
R2VEC
STORE RTARG1
INITVEL7 VLOAD VSU
VIPRIME
VINIT
STOVL DELVEET3 # DELVEET3 = VIPRIME-VINIT (+7)
VTARGET
STORE VTPRIME
SLOAD BHIZ
RTX2
# Page 491
INITVELX
VLOAD VSR2
VTPRIME
STOVL VTPRIME
VIPRIME
VSR2
STOVL VIPRIME
RTARG1
VSR2
STOVL RTARG1
DELVEET3
VSR2
STORE DELVEET3
INITVELX SETPD VLOAD
0D
RTARG1
STCALL RTARG
NORMEX
# ***** END OF INITVEL ROUTINE *****
# Page 492
# ***** MIDGIM *****
# MOD NO. 0, BY WILLMAN, SUBROUTINE RENDGUID, LOG P34-P35, P74-P75
# REVISION 03, 17 FEB 67
#
# IF THE ACTIVE VEHICLE IS DOING THE COMPUTATION, MIDGIM COMPUTES
# THE POSITIVE MIDDLE GIMBAL ANGLE OF THE ACTIVE VEHICLE TO THE INPUT
# DELTA VELOCITY VECTOR (0D IN PUSY LIST), OTHERWISE
# MIDGIM CONVERTS THE INPUT DELTA VELOCITY VECTOR FROM INERTIAL COORDIN-
# ATES TO LOCAL VERTICAL COORDINATES OF THE ACTIVE VEHICLE.
#
# ** INPUTS **
# NAME MEANING UNITS/SCALING/MODE
# AVFLAG INT FLAG -- 0 IS CSM ACTIVE, 1 IS LEM ACTIVE BIT
# COMPUTER INT FLAG -- 0 IS LEM COMPUTER, 1 IS CSM COMPUTER BIT
# RINIT ACTIVE VEHICLE RADIUS VECTOR METERS/CSEC (+7) VT
# VINIT ACTIVE VEHICLE VELOCITY VECTOR METERS/CSEC (+7) VT
# 0D(PL) ACTIVE VEHICLE DELTA VELOCITY VECTOR METERS/CSEC (+7) VT
#
# ** OUTPUTS **
# NAME MEANING UNITS/SCALING/MODE
# +MGA + MIDDLE GIMBAL ANGLE REVOLUTIONS (+0) DP
# DELVLVC DELTA VELOCITY VECTOR IN LV COORD. METERS/CSEC (+7) VT
# MGLVFLAG INT FLAG: 0 IS +MGA COMUTED, 1 IS DELVLVC COMP. BIT
#
# ** CALLING SEQUENCE **
# L CALL
# L+1 MIDGIM
# L+2 (RETURN -- ALWAYS)
#
# ** NO SUBROUTINES CALLED **
#
# ** DEBRIS -- ERASABLE TEMPORARY USAGE **
# A,Q,L, PUSH LIST, MPAC.
#
# ** ALARMS -- NONE **
# Page 493
# MIDDLE GIMBAL ANGLE COMPUTATION
SETLOC MIDDGIM
BANK
COUNT* $$/MIDG
HALFREV 2DEC 1 B-1
MIDGIM BON BOFF
AVFLAG
MIDGIM1
COMPUTER
GET.LVC
# COMPUTE +MGA IF AVFLAG AND COMPUTER HAVE OPPOSITE VALUES.
GET+MGA VLOAD UNIT # (PL 0D) V (+7) TO MPAC UNITIZE UV (+1)
DOT SL1 # DOT UV WITH Y(STABLE MEMBER) AND RESCALE
REFSMMAT +6 # FROM +2 TO +1 FOR ASIN ROUTINE
ARCSIN BPL
SETMGA
DAD DAD # CONVERT -MGA TO +MGA BY
HALFREV # ADDING ONE REVOLUTION
HALFREV
SETMGA STORE +MGA
CLR RVQ # CLEAR MGLVFLAG TO INDICATE +MGA CALC
MGLVFLAG # AND EXIT
MIDGIM1 BOFF
COMPUTER
GET+MGA
# COMPUTE DELVLVC IF AVFLAG AND COMPUTER HAVE SAME VALUES
GET.LVC VLOAD UNIT # (PL 6D) R (+29) IN MPAC UNITZE UR
RINIT
VCOMP # U(-R)
STORE 18D # U(-R) TO 18D
VXV UNIT # U(-R)*V EQ V*U(R), U(V*R)
VINIT
STORE 12D # U(V*R) TO 12D
VXV UNIT # U(V*R)*U(-R), U((V*R)*(-R))
18D
STOVL 6D # TRANSFORMATION MATRIX IS IN 6D (+1)
0D # DELTA V (+7) IN 0D
MXV VSL1 # CONVERT FROM INER COOR TO LV COOR (+8)
6D # AND SCALE +7 IN MPAC
STORE DELVLVC # STORE IN DELVLVC (+7(
SET RVQ # SET MGLVFLAG TO INDICATE LVC CALC
MGLVFLAG # AND EXIT
# ***** END OF MIDGIM ROUTINE *****
# Page 494
SELECTMU AXC,1 AXT,2
2D
0D
BOFF
CMOONFLG
SETMUER
AXC,1 AXT,2
10D
2D
SETMUER DLOAD* SXA,1
MUTABLE +4,1
RTX1
STODL* RTSR1/MU
MUTABLE -2,1
BOFF SR
CMOONFLG
RTRNMU
6D
RTRNMU STORE RTMU
SXA,2 CLEAR
RTX2
FINALFLG
GOTO
VN1645
# Page 495
# ***** PERIAPO *****
# MOD NO -1 LOG SECTION - P34-P35, P74-P75
# MOD BY WHITE.P DATE 18JAN68
#
# FUNCTIONAL DESCRIPTION
# THIS SUBROUTINE COMPUTES THE TWO BODY APOCENTER AND PERICENTER
# ALTITUDES GIVEN THE POSITION AND VELOCITY VECTORS FOR A POINT ON
# THE TRAJECTORY AND THE PRIMARY BODY.
#
# SETRAD IS CALLED TO DETERMINE THE RADIUS OF THE PRIMARY BODY.
#
# APSIDES IS CALLED TO SOVE FOR THE TWO BODY RADII OF APOCENTER AND
# PERICENTER AND THE ECCENTRICITY OF THE TRAJECTORY.
#
# CALLING SEQUENCE
# L CALL
# L+1 PERIAPO
# L+2 (RETURN -- ALWAYS)
#
# INPUT
# (1) RVEC POSITION VECTOR IN METERS
# SCALE FACTOR -- EARTH +29, MOON +27
# (2) VVEC VELOCITY VECTOR IN METERS/CENTISECOND
# SCALE FACTOR -- EARTH +7, MOON +5
# (3) X1 PRIMARY BODY INDICATOR
# EARTH -2, MOON -10
#
# OUTPUT
# (1) 2D APOCENTER RADIUS IN METERS
# SCALE FACTOR -- EARTH +29, MOON +27
# (2) 4D APOCENTER ALTITUDE IN METERS
# SCALE FACTOR -- EARTH +29, MOON +27
# (3) 6D PERICENTER RADIUS IN METERS
# SCALE FACTOR -- EARTH +29, MOON +27
# (4) 8D PERICENTER ALTITUDE IN METERS
# SCALE FACTOR -- EARTH +29, MOON +27
# (5) ECC ECCENTRICITY OF CONIC TRAJECTORY
# SCALE FACTOR -- +3
# (6) XXXALT RADIUS OF THE PRIMARY BODY IN METERS
# SCALE FACTOR -- EARTH +29, MOON +27
# (7) PUSHLOC EQUALS 10D
#
# SUBROUTINES USED
# SETRAD
# Page 496
# APSIDES
SETLOC APOPERI
BANK
COUNT* $$/PERAP
RPAD 2DEC 6373338 B-29 # STANDARD RADIUS OF PAD 37-B.
# = 20 909 901.57 FT
PERIAPO1 LXA,2 VSR*
RTX2
0,2
STOVL VVEC
LXA,1 VSR*
RTX1
0,2
STORE RVEC
PERIAPO STQ CALL
NORMEX
SETRAD
STCALL XXXALT
APSIDES
SETPD PUSH # 2D = APOCENTER RADIUS B29 OR B27
2D
DSU PDDL # 4D = APOGEE ALTITUDE B29 OR B27
XXXALT
0D
PUSH DSU # 6D = PERICENTER RADIUS B29 OR B27
XXXALT
PUSH GOTO # 8D = PERIGEE ALTITUDE B29 OR B27
NORMEX
# Page 497
# SETRAD
SETRAD DLOAD PUSH
RPAD
SXA,1 INCR,2
X2
2D
SLOAD BHIZ
X2
SETRADX
VLOAD ABVAL
RLS
PDDL
SETRADX DLOAD RVQ
# Page 498
# PRECSET
PRECSET STQ
NORMEX
STCALL TDEC2
LEMPREC
CALL
LEMSTORE
DLOAD
TDEC2
STCALL TDEC1
CSMPREC
CALL
CSMSTORE
GOTO
NORMEX
LEMSTORE VLOAD BOFF
RATT
AVFLAG
PASSIVE
ACTIVE STOVL RACT3
VATT
STORE VACT3
RVQ
CSMSTORE VLOAD BOFF
RATT
AVFLAG
ACTIVE
PASSIVE STOVL RPASS3
VATT
STORE VPASS3
RVQ
# Page 499
# VECSHIFT
VECSHIFT LXA,2 VSR*
RTX2
0,2
LXA,1 PDVL
RTX1
VSR* PDVL
0,2
RVQ
# Page 500
# SHIFTR1
SHIFTR1 LXA,2 SL*
RTX2
0,2
RVQ
# Page 501
# PROGRAM DESCRIPTION
#
# SUBROUTINE NAME R36 OUT-OF-PLANE RENDEZVOUS ROUTINE
# MOD NO. 2 DATE 2 JANUARY 1969
# MOD BY A.W.BANCROFT LOG SECTION EXTENDED VERBS
#
# FUNCTIONAL DESCRIPTION
#
# TO DISPLAY AT ASTRONAUT REQUEST LGC CALCULATED RENDEZVOUS
# OUT-OF-PLANE PARAMETERS (Y, YDOT, PSI). (REQUESTED BY DSKY).
#
# CALLING SEQUENCE
# ASTRONAUT REQUEST THROUGH DSKY V 90 E
#
# SUBROUTINES CALLED
# EXDSPRET
# GOMARKF
# CSMPREC
# LEMPREC
# SGNAGREE
# LOADTIME
#
# NORMAL EXIT MODES
# ASTRONAUT REQUEST THROUGH DSKY TO TERMINATE PROGRAM V 34 E
#
# ALARM OR ABORT EXIT MODES
# NONE
#
# OUTPUT
# DECIMAL DISPLAY OF TIME, Y, YDOT AND PSI
#
# DISPLAYED VALUES Y, YDOT, AND PSI, ARE STORED IN ERASABLE
# REGISTERS RANGE, RRATE, AND RTHETA RESPECTIVELY.
#
# ERASABLE INITIALIZATION REQUIRED
# CSM AND LEM STATE VECTORS
#
# DEBRIS
# CENTRALS A,Q,L
# OTHER: THOSE USED BY THE ABOVE LISTED SUBROUTINES
BANK 20
SETLOC R36CM
BANK
# Page 502
EBANK= RPASS36
SBANK= R36A
COUNT* $$/R36
R36 CAF TWO
TS OPTIONX
CAF ONE
TS OPTIONX +1
CAF OPTION36 # V 04 N 12
TC BANKCALL
CADR GOXDSPF
TC ENDEXT # TERMINATE
TC +2 # PROCEED
TC -5 # R2 LOADED VIA DSKY
TC POSTJUMP
CADR R36A
OPTION36 VN 0412
SETLOC R36LM
BANK
R36A ZL
CAF ZERO # SET TIME OF EVENT TO ZERO FOR FIRST
DXCH DSPTEMX # DISPLAY
LXCH OPTIONY # SAVE VEH. OPTION
R36P3 CAF V06N16N
TC BANKCALL
CADR GOMARKF
TCF ENDEXT # TERMINATE
TCF +2 # PROCEED
TCF -5 # RECYCLE FOR ASTRONAUT INPUT TIME
DXCH DSPTEMX
EXTEND
BZF LREGCHK # A-REG ZERO GOTO CHECK L-REG FOR ZERO
ASTROTIM DXCH MPAC # A-REG NON-ZERO, TIME = ASTRO INPUT TIME
TC INTPRET
RTB GOTO
DPMODE
R36INT
SETLOC R36LM1
BANK
R36INT STORE TDEC1
SLOAD SR1
OPTIONY
BHIZ CALL
R36PROG2 # FOR CSM DISPLAY
# Page 503
THISPREC # FOR LEM DISPLAY
GOTO
R36PROG3
R36PROG2 CALL
OTHPREC
R36PROG3 VLOAD PDVL
VATT
RATT # _
STORE RPASS36 # R
UNIT PDVL # P
VXV UNIT # -
STADR
STODL UNP36 # U
TAT
STORE TDEC1
SLOAD SR1
OPTIONY
BHIZ CALL
R36PROG4 # FOR CSM DISPLAY
OTHPREC # FOR LEM DISPLAY
GOTO
R36PROG5
R36PROG4 CALL
THISPREC
R36PROG5 VLOAD PDVL # _
VATT # VELOCITY VECTOR V 00D
RATT # A
PDDL
TAT # SAVE TIME IN LOCATION 30D FOR REDISPLAY
STOVL 30D # _
PUSH PUSH # POSITION VECTOR R IN 06D AND 12D
BVSU PDVL # _A _
RPASS36 # LINE OF SIGHT VECTOR R - R 12D
DOT SL1 # P A
UNP36 # _ _
STOVL RANGE # Y = U . R
00D # A
DOT SL1
UNP36 # . _ _
STOVL RRATE # Y = U . V
06D # _ A
UNIT PUSH # U = UNIT ( R ) 18D
VXV VXV # RA A
00D # _ _ _ _
18D # (U X V ) X U = U
VSL2 UNIT # RA A RA A
UNIT GOTO
R36B
SETLOC R36CM1
# Page 504
BANK
R36B STOVL 00D # UNIT HORIZONTAL IN FORWARD DIR. 00D
18D
DOT VXSC # _
12D # U
VSL2 # L
BVSU UNIT
UNIT
PUSH DOT # LOS PROJECTED INTO HORIZONTAL 12D
00D # PLANE
SL1 ARCCOS # _ _
STOVL RTHETA # PSI = ARCCOS(U . U )
VXV DOT # A L
00D
BPL DLOAD
R36TAG2
DPPOSMAX
DSU
RTHETA
STCALL RTHETA
R36TAG2
SETLOC R36LM
BANK
R36TAG2 DLOAD RTB
30D
SGNAGREE
STORE DSPTEMX
EXIT
CAF V06N90N # DISPLAY Y, YDOT, AND PSI.
TC BANKCALL
CADR GOMARKF
TCF ENDEXT # TERMINATE
TCF ENDEXT # PROCEED, END OF PROGRAM
TCF R36P3 # REDISPLAY OUTPUT
LREGCHK XCH L
EXTEND
BZF ENTTIM2 # L-REG ZERO, SET TIME = PRESENT TIME
XCH L # L-REG NON ZERO, TIME = ASTRO INPUT TIME
TCF ASTROTIM
ENTTIM2 TC INTPRET
RTB GOTO
LOADTIME
R36INT
V06N16N VN 00616
V06N90N VN 00690
SBANK= LOWSUPER